Ä¿¹Â´ÏƼ
¡å¡ã
  • ÃֽűÛ
  • ÀÚÀ¯°Ô½ÃÆÇ
  • Á¤Ä¡ÀÚÀ¯°Ô½ÃÆÇ
  • Áøº¸°ø°¨°Ô½ÃÆÇ
  • º¸¼ö°ø°¨°Ô½ÃÆÇ
  • À¯¸Ó/°¨µ¿
  • ½ÅÀÔ°Ô½ÃÆÇ
> ÀÚÀ¯°Ô½ÃÆÇ ¡å¡ã
  • ÀÚÀ¯°Ô½ÃÆÇ
  • Á¤Ä¡ÀÚÀ¯°Ô½ÃÆÇ
  • Áøº¸°ø°¨°Ô½ÃÆÇ
  • º¸¼ö°ø°¨°Ô½ÃÆÇ
  • À¯¸Ó/°¨µ¿
> ºÐ·ù
¡å¡ã
  • ÀϹÝ
  • ¸»¸Ó¸®

¹Ì±¹¼öÇаæ½Ã´ëȸ deepseek vs Open AI 10
¼­·Î¼Ò 2025-01-28 14:20   Á¶È¸ : 1770
b236d40653a722ef99148c9bd37e3d911bfc78f8.png (7 KB)

Â÷·Ê·Î ³»³õÀº µö½ÃÅ©-V3°ú µö½ÃÅ©-R1Àº ÀÌ È¸»çÀÇ À̸§À» ¼¼°è¿¡ ¾Ë¸®´Â °è±â°¡ µÆ´Ù. µö½ÃÅ©´Â V3¿Í R1ÀÌ ¸ðµÎ ¹Ì±¹ÀÇ ÁÖ¿ä AI ¸ðµ¨º¸´Ù ¼º´ÉÀÌ ´õ ³´°Å³ª ºñ½ÁÇÑ ¼öÁØÀ̶ó°í ÀÚ½ÅÇß´Ù.

 

ƯÈ÷ ¹Ì±¹ ¼öÇаæ½Ã´ëȸÀÎ AIME 2024 º¥Ä¡¸¶Å© Å×½ºÆ®¿¡¼­ R1Àº 79.8%¸¦ ¾ò¾î ¿ÀÇÂAI 'o1'ÀÇ 79.2%º¸´Ù ¾Õ¼¹´Ù°í µö½ÃÅ©´Â ¹àÇû´Ù.

 

2024 AIME ¹®Á¦ 15.

 

Find the number of rectangles that can be formed inside a fixed regular dodecagon ($12$-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.

 

°íÁ¤ µÈ  Á¤ 12°¢Çü ³»ºÎ¿¡ Çü¼º µÉ ¼öÀÖ´Â Á÷»ç°¢ÇüÀÇ ¼ö¸¦ ãÀ¸½Ê½Ã¿À.

(´Ü Á÷»ç°¢ÇüÀÇ °¢¸éÀÌ 12°¢ÇüÀÇ ÇѺ¯ ¶Ç´Â ´ë°¢¼±¿¡ÀÖ´Â °æ¿ì.) 

¾Æ·¡ ´ÙÀ̾î±×·¥Àº  3°³ÀÇ Á÷»ç°¢ÇüÀ» º¸¿©ÁÝ´Ï´Ù.

 

20250128144641_VJfuss9R5E.png

 

 

0 ÃßõÇϱ⠴ٸ¥ÀÇ°ß 0 |
¸ñ·Ïº¸±â ÄÚ¸àÆ®ÀÛ¼º ÄÚ¸àÆ®10
±âÁرâÂùÀ̾ƺü ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
¼­·Î¼Ò ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
»Ë»ÑÇϸéºÎÀڵȴٸ鼭 ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
ºñ”d ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
µÕÀ̾߳îÀÚ ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
Ç÷¸Í ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
¼­·Î¼Ò ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
Ȳ±Ý»ç´Ù¸® ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
¼­·Î¼Ò ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç
Å«¼úÅë ´Ù¸¥ÀÇ°ß 0 Ãßõ 0
| µ¡±Û Á¡¾ÆÀÌÄÜ
  1. ´ñ±ÛÁÖ¼Òº¹»ç

¿å¼³, »óó ÁÙ ¼ö ÀÖ´Â ¾ÇÇÃÀº »ï°¡ÁÖ¼¼¿ä.